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Abstract

We present implementation details and analyze convergence of a two-grid solver
forming the core of a fully automatic hp-adaptive strategy for electromagnetic prob-
lems [9, 26]. The solver delivers a solution for a fine grid obtained from an arbitrary
coarse hp grid by a global hp-refinement. The classical V-cycle algorithm combines an
overlapping Block-Jacobi smoother with optimal relaxation, and a direct solve on the
coarse grid. A theoretical analysis of the two grid solver is illustrated with numerical
experiments. Several electromagnetic applications show the efficiency of combining
the fully automatic hp-adaptive strategy with the two grid solver. This paper is a
continuation of [25].
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1 Introduction

The paper is concerned with a construction and study of an iterative solver for linear systems
resulting from hp-adaptive Finite Element (FE) discretizations of Maxwell’s equations. Here
h stands for element size, and p denotes element order of approximation, both varying locally
throughout the mesh.

The algorithm presented in [13, 9] produces a sequence of optimally hp-refined meshes
that delivers exponential convergence rates in terms of the FE error measured in energy norm
vs the discrete problem size (number of degrees-of-freedom (d.o.f.)) or the CPU time. A
given (coarse) hp mesh is first refined globally in both h and p to yield a fine mesh, i.e. each
element is broken into four element-sons (eight in 3D), and the discretization order p is raised
uniformly by one. We solve then the problem of interest on the fine mesh. The next optimal
coarse mesh is determined by minimizing the projection based interpolation error of the fine
mesh solution with respect to the optimally refined coarse mesh. The algorithm is very
general, and it applies to H'-, H(curl)-, and H(div)-conforming discretizations [12, 10]. In
particular, it is suitable for electromagnetic problems. Moreover, since the mesh optimization
process is based on minimizing the interpolation error rather than the residual, the algorithm
is problem independent, and it can be applied to nonlinear and eigenvalue problems as well.

Critical to the success of the proposed adaptive strategy is the solution of the fine grid
problem. Typically, in 3D, the global Ap-refinement increases the problem size at least by one
order of magnitude, making the use of an iterative solver inevitable. With a multigrid solver
in mind, we choose to implement first a two grid solver based on the interaction between the
coarse and fine hp meshes. The choice is quite natural. The coarse meshes are minimum in
size. Also, for wave propagation problems in the frequency domain, the size of the coarsest
mesh in the multigrid algorithm is limited by the condition that the mesh has to resolve all
eigenvalues below the frequency of interest. Consequently, the sequence of multigrid meshes
may be limited to just a few meshes only.

The fine mesh is obtained from the coarse mesh by the global hp-refinement. This guar-
antees that the corresponding FE spaces are nested, and allows for the standard construction
of the prolongation and restriction operators. Notice that the sequence of optimal coarse hp
meshes produced by the self-adaptive algorithm discussed above is not nested. The coarse
meshes are highly non-uniform, both in element size h and order of approximation p, and
they frequently include anisotropically refined elements (construction of multigrid algorithms
for such anisotropically refined meshes is sometimes difficult), but the global refinement fa-
cilitates greatly the logic of implementation.

Customarily, any work on iterative methods starts with self-adjoint and positive definite
problems, and this was the subject of the work presented in [25]. We included 2D and 3D



examples of problems with highly non homogeneous and anisotropic material data, as well
as problems presenting corners and edge singularities.

In this paper, we are concerned with a construction of a similar but yet different two
grid solver algorithm suitable for general electromagnetic (EM) problems. We also discuss
advantages and limitations of the Ap-adaptive strategy combined with the two grid solver
when applied to real life EM problems.

The structure of our presentation is as follows. We begin with a formulation of the
two grid solver algorithm, and a study of its convergence. In Section 3, we present some
implementation details, while Section 4 is devoted to numerical experimentation. A number
of EM applications is presented in Section 5. Conclusions are drawn in Section 6.

Notice that the two grid solver is not intended to be used only as a solver itself, but also
as a crucial part of the hAp-adaptive strategy. Among several implementation and theoretical
issues that we address in this paper, one is especially important for us; s it possible to guide
the optimal hp-refinements for EM problems with a partially converged fine grid solution
only, and to what extent?

2 Formulation of the Two Grid Solver

2.1 A stabilized variational formulation for solving the Maxwell’s
equations

At this point, we describe a mathematical formulation to solve the electromagnetic problem.
Following [8], we consider a bounded domain 2 C R?, with boundary T' consisting of two
disjoint parts I'; and I's. We wish to find electric field E(x), x € €0, that satisfies:

e the reduced wave equation in €2,

1 .
V x (V X E) — (WP — jwo)E = —jwJ"™ (2.1)
o

e Dirichlet (ideal conductor) boundary condition on I'y,
nxE=0, (2.2)

e Neumann boundary condition on I's,

1 .
n X (;V X E) = —jwJg"? . (2.3)



Here, w is an angular frequency, €, i, 0 denote dielectric permittivity, magnetic permeability,

and conductivity of the medium, J"™ is a prescribed, impressed (source) current, J¢' is a

prescribed, impressed surface current tangent to boundary I's, 7 - J4™® = 0, with n denoting

the normal outward unit vector to I'. Finally, ;7 is the imaginary unit.

For the sake of simplicity, we shall restrict ourselves to simply connected domains €2 only,
avoiding the technical issues associated to cohomology spaces, see e.q. [7].

Standard variational formulation. The standard variational formulation is obtained
by multiplying (2.1) by a vector test function F', integrating over domain €, integrating by
parts, and using the Neumann boundary condition.

Find E € Hp(curl; Q) such that

/Q%(V x E)-(V x F)dx — /Q(w2e — jwo)E - Fdx = (2.4)

—jw / T Fdr 4 jw / Jm . FdS  for all F € Hp(curl; () .
Q )

In the above Hp(curl; Q) is the Hilbert space of admissible solutions,
Hp(curl:Q):={EcL*(Q) : VXEcL*Q),nxE=0onT}, (2.5)
with inner product defined by:

(W, V) Hp (curl) = (u,’v)Lz(Q) +(V xu,V x v)Lz(Q (2.6)

.
The original and variational formulations are equivalent to each other.

Stabilized variational formulation. Introducing a space of Lagrange multipliers (scalar
potentials):

HL(Q):={qe H(Q) : ¢=0o0nT,}, (2.7)

we employ a special test function F = Vq,q € H}L(), to learn that solution E to the
variational formulation must automatically satisfy the weak form of the continuity equation,

—/(wQE—jwa)E-V(j dz = —jw/ Jm . g dx+jw/ T 7gds . (2.8)
Q Q Iy
We also recall the Helmholtz decomposition:

E=V¢+ Ey, where¢ec Hp () and (Ey, Vq)Lz(Q =0 Vg€ Hp(Q). (2.9)

)
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It is well known that the standard variational formulation is not uniformly stable with
respect to the wave number k? = p(w?e — jwo). As k — 0, we loose the control over
gradients. This corresponds to the fact that, in the limiting case £k = 0, the problem is
ill-posed as the gradient component remains undetermined. A remedy to this problem is to
enforce the continuity equation explicitly at the expense of introducing a Lagrange multiplier
p € HH(Q). The so called stabilized variational formulation looks as follows.

Find E € Hp(curl;Q),p € H5(Q) such that

/Q%(V x E)(V x F)dx — /Q(w26 — jwo)E - Fdx

—/(w26 — jwo)Vp - Fdr = —jw/ Jmr . Fdx —i—jw/ JIP . FdS
Q Q Ty
VF € Hp(curl; Q)

(2.10)

—/Q(we—ja)E-qux:—j/QJimp-vcydﬁj/ Jm . v qds
I
Vg € HH(Q).

By repeating the trick with the substitution F' = Vg in the first equation, we learn that
the Lagrange multiplier p identically vanishes, and for that reason, it is frequently called the
hidden variable. In comparison with the original formulation, the stability constant for the
regularized formulation converges to zero slower as k — 0. In the case when o = 0, and
the right-hand side of the second equation vanishes, we can divide the second equation by
another w to obtain

—/eE-ngxzo. (2.11)
Q

In this case, the inf-sup stability constant converges to one as w — 0. The regularized for-
mulation works because gradients of the scalar-valued potentials from H},(Q2) form precisely
the null space of the curl-curl operator.

The point about the stabilized (mixed) formulation is that, whether we use it or not in
the actual computations (the improved stability is one good reason to do it), the original
variational problem is equivalent to the mixed problem.

2.2 Formulation of the two grid solver for EM

Solving a linear system of equations (using a multigrid scheme) arising from Maxwell’s
equations is challenging mainly for two reasons: the linear system is (in general) indefinite,
and the null space of the differential operator curl is large.



The problem of indefiniteness of the linear system can be overcome by requesting the
coarse grid to be fine enough (see, for example, [6, 16]). This assumption is needed both to
define a block-Jacobi smoother, as well as to prove convergence of the overall two grid solver
algorithm.

In order to control the solution over the null space of the curl, we may utilize Helmholtz
decomposition (2.12), and treat both terms separately.

Hp(curl; Q) = (Ker(curl)) @ (Ker(curl))™* (2.12)

Two corresponding decompositions have been constructed for lower order FE spaces.
More precisely, let T be a grid, M the associated lowest order Nedelec subspaces of Hp(curl; (2)
of the first kind [24], and W the corresponding first order piecewise polynomial subspace of
HL(Q). Let, v; (resp. ¢;) denote the non-Dirichlet vertexes (resp. edges) of the grid T.
Then, we define:

Qf =int((J{LeT:v €dL}) (2.13)

Qf =int(( {L €T :e€dL}). (2.14)
And:

MP ={ue M :supp(u) C '} ; M ={ue M :supp(u) C Q/} (2.15)

W/ ={ueW:supp(u) C Q'} ; Wf={ue W :supp(u) CQ}=0. (2.16)

We have the decomposition:

wW=> Ww. (2.17)
Arnold et. al. [2] proposed the following decomposition of M:

M=> M, (2.18)

which we shall call the AFW decomposition. Another well known decomposition of M is
Hiptmair’s decomposition [19]:

M=) M+ VW'. (2.19)



Each decomposition, together with the already prescribed coarse grid, determines a two
grid solver in terms of a multigrid framework, as presented, for example, in [5]. More
precisely, the bilinear form defined over each subspace can be inverted, generating a block
Jacobi (or Gauss-Seidel) smoother for the fine grid that, together with the coarse grid, define
a two grid solver algorithm.

A formal generalization of these decompositions for hp-edge elements is straightfor-
ward. Notice that Hiptmair’s decomposition (with lowest order elements) utilizes only
1-dimensional subspaces (and therefore, point smoothers), while the AFW decomposition
utilizes 4-dimensional subspaces. For higher order elements, size of patches will become
considerably larger as p increases and, as a consequence, amount of memory (and number
of operations) required by the corresponding block Jacobi smoothers become prohibitive.
Thus, a suitable two grid solver algorithm for hp-edge FE may come from combining the
ideas presented in [25] with Hiptmair’s approach to control gradients.

In the remainder of this section, we present a two grid solver algorithm that combines
a generalization of Hiptmair’s approach to hp-edge FE with the block Jacobi smoother pre-
sented in [25]. M and W will denote the hp-FE subspaces of Hp(curl) and Hj},, respectively.

We will illustrate via numerical experiments the importance of an adequate control of
the kernel of the curl operator formed by gradients of potentials. Indeed, a two grid solver
may not converge if the gradients are not resolved correctly.

Overlapping block Jacobi smoothers. At this point, we define two overlapping block
Jacobi smoothers:

e one used as a preconditioner for the electric field, given by

N
§ : -1,T
=1

e and another used as a preconditioner for the gradients, given by

N
—-1,T
=1

Here D; denotes the diagonal sub-block of global stiffness matrix A corresponding
to d.o.f. of a particular (modified) element that span an hp-edge FE subspace M; C
Hp(curl; Q). Dy, denotes the diagonal sub-block of global mass matrix for the gradi-
ents (Laplace equation) Ay corresponding to d.o.f. of a particular (modified) element that
span an hp FE subspace W, C H}(Q). ¢, ty, are the matrices associated with the natural
embeddings from M; into M, and VW, into M, respectively.



At this point, we would like to simplify our notation and drop the boldface symbols for
the matrices and vectors in the coefficient space.

An approximation to the optimal relaxation parameter. An optimal relaxation pa-
rameter was selected in [25] to minimize the error in the energy norm, which turned out to be
a computable number for self-adjoint positive definite (SPD) problems. For electrodynamic
problems, computation of the optimal relaxation parameter involves solution of the system
of linear equations that we are trying to solve. Thus, only an approximation to it may be
available.

Since S ~ A~!, we define our approximation to the optimal relaxation parameter as the
argument that minimizes S in the energy norm. Thus, at step n, a™ is given by,

(Sr™ SASr™)p

n+1) — 2.2
Iz (SASr™ SASrm) (220)

o™ = arg min || Sr

where B is the mass matrix associated with the energy norm ((Bu,v) = (u,v) gp(cur)), and
S is either Sg or Sy.

2.3 The two grid algorithm

We define our two-grid solver (based on a modification of Hiptmair’s decomposition) as the
iteration along the following steps. Given current solution x, and residual r, we perform,

1. coarse grid correction, i.c.,

e restrict the residual to the coarse grid dual space,

ro = QTr; (2.21)
e solve the coarse grid problem for coarse grid correction Az,

AogAxg =1y ; (2.22)

e prolong the coarse grid correction to the fine grid space, and compute the corre-
sponding correction for the residual,

Ax = QAxg, Ar= AAx, (2.23)
e update the fine grid solution and residual,
r=x+ Azx,
(2.24)
r=r—Ar;



2. block-Jacobi smoother on the fine grid, i.e.,

e compute the smoothing correction and the corresponding correction for the resid-
ual,

Ax = Sgr, Ar = AAux; (2.25)

e compute an approximation of the optimal relaxation parameter «,

(Sgr, SEASET)B

= : 2.26
ar (SEASE’I", SEASET‘)B ’ ( )

e update the solution and residual,
r=x+ agAzr, (2.27)

r=1r—agAr;
3. block-Jacobi smoother to control gradients, i.c.,

e compute the smoothing correction and the corresponding correction for the gra-
dients of the residual,

Ax = Syr, Ar = AAux; (2.28)

e compute an approximation of the optimal relaxation parameter «,

(Syr, SyASyr) s

= : 2.29
N T (S ASer, SyASyr) s’ (2.29)

e update the solution and residual,
r=x+ayAx, (2.30)

r=r—avAr.

2.4 Convergence Theory

A proof of convergence for our two grid solver algorithm can be inferred from the convergence
theory for multigrid algorithms presented in [16], which refers to [15, 19], and [2] among
others, for detailed proofs. In here, we outline the main ingredients of the convergence
proof, which can be divided into three parts.

e First, we introduce some notation and a discrete Poincaré-Friedrichs type inequality,
necessary to define our block Jacobi smoothers.



e Next, we define an auxiliary problem, which differs from our original problem in the
value of wave number (squared) k2. By setting k? = —1, we obtain a SPD auxiliary
problem with convergence properties in terms of the two grid solver equivalent (up to
a constant times element size h) to our original problem, under the assumption that
the coarse grid is fine enough.

e Finally, we prove convergence of our two grid algorithm for the auxiliary SPD problem
with a contraction constant independent of h, and possibly depending upon polynomial
order of approximation p. Thus, convergence of the two grid solver for the original
problem is guaranteed.

We assume that k? is real and such that our boundary value problem given by equations
(2.1), (2.2), and (2.3) has a unique solution. In the following, we will attempt to trace the
dependence of various constants such as: wave number k, mesh size h, and polynomial order
of approximation p. C will denote a generic positive constant independent of h, p, and k.
A subindex h, p, or k will denote dependence upon h, p, or k, respectively. For example,
C, will denote a generic positive constant independent of i and &, but possibly dependent
upon p.

We assume that our subspace decomposition M = 3~ M; is such that the discrete Friedrichs
inequality holds, i.e.:

lalle< Ch|| Vxaq |2 Yar € My, 1>1, (2.31)

where Ml = {Clz e M : (ql,qul)LQ = OV@ € VVl}, and VIV, = {ql e M : Vqu = O} C M.
This inequality has been proved for a variety of space decompositions, including spaces
corresponding to local Dirichlet problems for Ap-meshes (see, for example, [10, 11, 14]).

Using the discrete Friedrichs inequality we can prove the following result.

Proposition 1
Let q; € M, (I > 1) be a solution of problem,

Alqr, vi) = A(u, vi) Vv, € My, (2.32)
where w € M, and A(, ) is the bilinear form associated to our variational formulation. Then:

| @ (| Hp(cur,on < Cre || 0 || Hp (curt ) 5 (2.33)

max{1, K%}
min{1 — C?h2(k? + 1), k?}"

h%(k* + 1) is small enough, then the local problems have unique solutions, and therefore, the

where supp q; C U,V q; € M}, and Cpy, = It follows that, if

corresponding block Jacobi smoothers are well defined. |
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Proof:
Using discrete Helmholtz decomposition, we have:
Q=q:+taq.z, (d1, Q2)r2 =0 (2.34)

where q;; € M, and qi2 = V¢ for some ¢ € W,.

Substituting v; = q; in (2.32), and recalling the definition of bilinear form A(, ), we
obtain:

(VXQl,1,V><Ql,1)L2 - k2(Ql,1an,1)L2 - kQ(Qz,QO)L? =

(2.35)
(Vxu, VXQZ,I)LQ - k:2(u, Qz,l)L2 - k:2(u, QI,2)L2-
Setting v; = q; 2 in (2.32), we have:
K (2, di2) e = K (u, qua) e - (2.36)
Thus:
(a1, ql,1>HD(curl) - (k2 + 1)(qu, qi1)re = (Vxu, Vxaqp) e — /f2(117 CIRVIER (2.37)

Since q; is discrete divergence free (i.e., qi; € M;), we can apply Friedrich’s inequality on
the left hand side:

” qi,1 ||%{D(curl) _(k:2 + 1) H i1 ||%2Z [1 - CQhQ(k2 + 1)] || Qi1 ||§1D(curl) : (238)
Dividing last equation by || qu;1 ||#p(curt), and applying eq. (2.37), we obtain:

(Vxu, VXQZ,l)m - k:2(u, QZ,l)L2

1= (K + 1) | 1 || #pewrn < sup (2.39)
ai,1€M, | a1 |5 (curn)
From eq. (2.36), we derive for q; that:
Vxu, Vxqua)re — k*(u, quo) 2
k2 H q:,2 HHD(curl)g sup ( 172)[/ ( 172)[/ . (240)

@ 2=V, YEW, | 2 [ #p (cur)
Using (2.39), (2.40), and the orthogonality of Hilbert spaces M; and VIV, we conclude

[]‘ - O2h2(k2 + 1)]2 || q,1 ||%ID(curl) +k4 || qi,2 “%{D(curl)S

Vxu, Vxqp)2 — k(u, )
(Vo VX = W Wiz 2 < (g s o 44 )2

(sup
q,EM, H q; ||HD(curl)

11



and the result follows, since:

2 2 1/2 max{1, k*}
(” qi1 ||HD(cur1) + H qi,2 ||HD(curl)) / < mln{l N C«th(k,g + 1),k2} :

(2.42)

As a consequence of the proposition, the A(, )-projection P; : Hp(curl) — M, satisfies:

max{1, k?}
P cur S . cur . 2.4
|| u ||HD( 1) HllIl{l _ C2h2(l€2 + 1)’]{;2} H u HHD( 1) ( 3)

At this point, we consider an auxiliary boundary value problem given again by equations
(2.1), (2.2), and (2.3), but with £* = —1. And we denote operators associated to our SPD
auxiliary problem with the =~ symbol. For example, P;.

In the following, we show that the convergence properties of the two grid solver for the
original and auxiliary problems are comparable up to a perturbation term. Such results were
first proved for the Helmholtz equation in [6]. That they can be extended to the Maxwell
case, notwithstanding the nonellipticity, was realized in [15]. The following perturbation
lemma is proved along the lines of a similar result in [16]:

Lemma 1
For all 1 > 1, we have:

| Pr— Py i eury < C(1 + Cri) (K + 1A, (2.44)

max{1, k%}
min{l — C?h2(k? 4+ 1), k?}

where Chy, =

Proof:

Let u, ¢ € Hp(curl). Since Py is an Hp(curl)-projection, we obtain the following
identity:

(Pru— P, Q) sy (eurt) = (P — 1, Pia) a1y cun)
= A(Pju—u,Piq) + (k2 +1)(Pju — u, P,q) 12 (2.45)
= (K2 4+ 1)(Pu—u,P,q)
Now, using discrete Helmholtz decomposition (and notation of Proposition 1):
(u—Pu,q)2=(u—-Pu,q)rz+(u—Pu,q2)r . (2.46)

12



Since q;2 = V¢y:

—k*(u—Pu,q2)e = A(u—Pju,qu0) = 0. (2.47)
Applying Cauchy-Schwarz inequality, followed by discrete Friedrich’s inequality, we obtain:

(u—=Pu,q1)e <Ch||u—Puu|r2ol VX [|r2@) - (2.48)
Thus:

(Pu— f’lu,q)HD(curl) < Ch(k*+1) |u—Pu |29l V x P,q 2@ - (2.49)
From (2.43) we obtain:

[ =P |r2)< (1 + Cn) | 0 [Hpcurton) - (2.50)
Finally,

I'V x Pig |20 <]l 4 lp(euro) - (2.51)

And the result follows. |

The following lemma quantifies the difference between the definite and the indefinite
coarse solves that appears in the algorithm. The proof is similar to the proof of [15,
Lemma 4.3] (also cf. [23]) but we now keep track of the dependence of the constants on
polynomial degree using the recent results in [10, 11].

Lemma 2
If domain §2 is convex, we have:

- h
|| PO - PO ”HD(curl)S C

k )
pl/Zie\/ 1- C]/gpl/}éfe

(2.52)

where € > 0. |

Proof: Equations (2.45)-(2.47) are valid also for coarse grid subspace M,. We have for
allu,qe M :

(Poll - 15011, q)HD(curl) = (kz + 1)(11 — Pou, —010,1)1:2 ) (2'53>

13



where q; is the discrete divergence free part of qy = Poq.

We define e = Pyu — u, with e;, e, denoting the corresponding terms of the discrete
Helmholtz decomposition of e. Then:

(Pou — Pyu, Q) t1p(curt) = (K2 + 1)[(€1,q0,1) 2 + (€2,d0,1) 2] (2.54)

In order to estimate both terms on the right hand side, we show first (following [15]) that:

h
| e |l2< Ck}m | e || tp(curn) - (2.55)

We define e!, q”! € Hp(curl) by the following conditions:

Vxe'=Vxe . ; (e,Vep)=0 VoeH}.
(2.56)
Vxq"'=Vxqy. ; (@™, Ve)=0 Ve¢eH}.

The following result has been proved in [3] for square elements using the technique of
projection-based interpolation?!,

h
|| el—el ||L2§ C’W ||V><e1 ||L2 . (257)

Here € > 0 is an arbitrary small number, and C' = C(e) — oo, as € — 0.

With discrete divergence free e, replaced with pointwise divergence free field e', we turn
now to the standard duality argument and consider solution w! € Hp(curl) to the dual
problem:

A(p,w') = (e',p) Vp e Hp(curl). (2.58)
With the assumption on convexity of the domain, we have:
” w! HHl(curl)S C ” e' HL2 ) (2'59>

where || W' {3 oy =l W' 70 + | V X W 170

Using the standard duality argument, and the fact that w! is divergence free, we obtain,

| el [|22< Alet, wh) = Aer, w!h) = A(e,w!) = Ae, w! — TI®"Iw!) 2.60)

S Ck ” €1 HHD(curl) . || Wl - HCUTZWI ||HD(cur1) 5

! An analogous result holds for triangular elements under a conjecture of an L2-stability result, see [4]
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where I1¢"! is the projection-based interpolation operator.

From the approximation theory in [10, 11], we obtain:

| w! — 1w ||HD(CUI'1)§ ¢ | w! HHl(curl)S Ck | e' 2 - (2.61)

pl—e pl—e

Application of triangle inequality finishes proof of (2.55).

Now, since q! is divergence free, using Cauchy-Schwarz inequality, and estimate (2.57)

for function q%!, we obtain:

(€2, d0,1)z2 = (€2,d0,1 — qO’l)L2 <l e [|z2]| o1 — q*! |2
h h (2.62)
< CW | ezl V X ao1 [[r2< CW | e[| curn) | G [ 71 (curt)
Similarly, using Cauchy-Schwarz inequality, and estimate (2.55), we get:
h
(e1>q0,1)L2 SH €1 HL2H do,1 HLQS Ckm H e HHD(curl)H q ”HD(curl) . (263)
Thus:
~ h
(Pou — Pou, q)HD(curl) < Ck]m | e ||HD(cur1)|| a HHD(curl) : (2.64)

In order to finish the proof for this lemma, it only remains to show that || e || m, cur)<

1
Ck
V1= Cih/pt/2—e

| u || (curt). This can be done as follows:

H e H%{D(curl):H u—Pou ”12‘ID(curl)

= A(u—Pyu,u — Pou) + (1 + 4?)(u — Pou,u — Pyu)

= (u,u— POU)HD(Curl) + (1 + k?)(u — Pyu, Pou — Pyu) - (2.65)

h
S” u H%—ID(curl) +Ck]m H u— POu H%—ID(curl)
i

Introducing the error reduction operator E™ (at step n) associated to the two grid algo-
rithm, i.e., ™) = E"e(™ we conclude the following theorem:
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THEOREM 1
If the coarse grid is fine enough, and

|| E“u HHD(curl)S S || u ||HD(curl) with 0 < 5 <1, (266)
then:
|| E"u HHD(curl)S ) || u ||HD(curl) with) < 6§ < 1 s (267)

where, § = o+ Cr?>aox | P, — P, | & (curD) - 1

The remainder of this section is devoted to proving (2.66), which is a sufficient condition
to guarantee the main result (2.67). At this point, we have already determined convergence
properties of the two grid solver with respect to the wave number k.

Using standard domain decomposition techniques for SPD problems, it is well known that

(2.66) follows from the following two conditions for the subspace splitting (see, for instance,
29, 5], or [27)):

e Condition I, necessary to estimate the maximum eigenvalue of the preconditioned

matrix:
Z Z(qza qj)HD(curl) < C[Z(qw qi)HD(curl)]l/2 [Z (qja qj)HD(curl)]l/2 ; (268)
i>1>1 i>1 j>1

where q; € M,;. This condition is easily proved by using a coloring algorithm as
described, for example, in [27].

e Condition II, necessary to estimate the minimum eigenvalue of the preconditioned
matrix, by showing that M = " M, is a stable subspace splitting, i.e., for all q € M,
there exist q; € M; such that q = 37,5 qi, and

l %—ID(curl)S C H q H%—ID(curl) : (269>
> lhal
1>0

In order to prove Condition II with a constant independent of h (but possibly dependent
upon p), we consider again the discrete Helmholtz decomposition. For all q € (I — Py)M:

q=Vw+q (2.70)

where e M ={qe M :(q,Vp)2=0 Vo W}, weW.
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If domain € is convex, it is proved in [2] using the fact that q € (I — 130)]\/[ that:

lallz< Ghllalmeany - 5 [wlesChllale (2.71)

Assuming that we have an L?-stable splitting for w (see [2]), and using discrete Poincare
and inverse inequalities, we obtain:

lallze> Coh ™ | w 222 3 Coh ™ lwi 22> > Cp || Vay |lzz (2.72)

>1 >1

Similarly, assuming that we have an L?-stable splitting for ¢, and using discrete Friedrichs
and inverse inequalities, we obtain:

Ia llapean> Co(1+ 071 || @[22 (2.73)
Zcp(l + h‘il) H QI HL22 Zcp H 611 ”HD(curl) . (274)
I>1 I>1

Defining q; = q; + Vw;, we conclude that for all q € (I— f’o)M there exists a decomposition
q= ZZZI q; such that:

|| a H%{D(curl)Z CPZ || q ||§{D(curl) : (275)

>1

Then Condition II holds.

Observation: We have shown that a sufficient condition for convergence of the two grid
solver is to have an L2-stable subspace splittings for both parts of the discrete Helmholtz
decomposition. In particular:

e M; = M} (as defined in Section 2.2), implicitly generate L2-stable splittings for the
discrete divergence free and the gradient parts.

o M;=Mf for 1 <I<N.,, M=VW} for N.+1 <1< N,+ N, (as defined in Section
2.2), generate L2-stable splittings for the discrete divergence free (by using the first
N, subspaces) and the gradient parts (by using the last N, subspaces). Notice that
if the last NV, subspaces are not included, then we do not obtain a stable splitting for
gradients, leading to a diverging two grid algorithm.

e The subspace splitting corresponding to the definition of our smoother Sg generates
a L2-stable splitting for the discrete divergence free part, while the subspace splitting
corresponding to the definition of our smoother Sy generates a L2-stable splitting for
the gradient part. Thus, we obtain a converging two grid solver.
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Finally, notice that in order to trace the dependence of constants upon p, we cannot use
inverse inequalities. Thus, this part of the proof of convergence becomes rather challenging
and we have not attempted it. Numerical results indicate that dependence of the two grid
solver contraction constant upon p is, at most, logarithmic.

2.5 Stopping criterion

Our ideal stopping criterion translates into condition,
€™ 15 = 1A ™[5 < eror - (2.76)

Obviously, this quantity is not computable, and a stopping criterion can only be based on
an approximation to it.

3 Implementation

In [25], we discussed several implementation aspects, such as assembling, sparse storage pat-
tern, selection of blocks for the block-Jacobi smoother, and construction of the prolongation
(restriction) operator for elliptic problems. The first two implementation aspects (assem-
bling and sparse storage pattern) are problem independent, while construction of elliptic
operators (stiffness matrix, block-Jacobi smoother, and prolongation/restriction operators)
can be naturally extended to electromagnetic problems by using H (curl) degrees of freedom
(d.o.f.) instead of H' d.o.f.. Thus, most implementation details discussed in [25] remain
valid for EM problems as well.

In this paper, we discuss the implementation of a new embedding operator from gradients
of H' into H(curl) arising for EM problems. This operator is needed to construct the block-
Jacobi smoother for gradients.

3.1 The transfer matrix between H' and H(curl)

We present now shortly the main steps of the algorithm to construct the transfer matrix cor-
responding to the embedding VH' C H(curl). More precisely, if W C H' and M C H(curl)
denote the FE spaces with the corresponding FE basis functions given by {ey,...,e.} € W,
{g1,...,8s} € M, we have:

w = Zwiei and E= Z Ejgj (377)
i=1

j=1
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We seek a global matrix T;; such that
Vei =) Tjig; , (3.78)
j=1

which implies the corresponding relation between the H!- and H(curl)- degrees of freedom

(d.o.f.),
i=1

The following algorithm exploits the technology of constrained approximation and general-
ized connectivities. For an element K, the global basis functions e; and g; are related to the
element shape functions ¢, and 1y,

eilk =Y Caute »  &lr=>_ Dy, (3.80)
! 1

where Cj, and Dj; are the coefficients corresponding to generalized connectivities related to
irregular nodes and the constrained approximation. Formulas (3.80) imply the corresponding
relations between local and global d.o.f.

The element transfer matrix Sy, relates element shape functions ¢, and v; according to
the formula

Vor=>_ Suth . (3.81)
l

For the parametric elements forming the de Rham diagram, the element transfer matrix
is independent of the element, and it can be precomputed for the master element shape
functions.

Finally, due to the hierarchical construction of the shape functions, the master element
transfer matrix can be precomputed for the maximum order of approximation with the actual
element matrix extracted from the precomputed one. We use a simple collocation method to
precompute Sk;.

For an element K, we have:
Vei= Tiugi=> TiY Dy, (3.82)
J J l
and, at the same time,

Ve, =Y CuVor=>_ Cu > Swih (3.83)
! k 1
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which implies,
2. Ti> Di=3 Ciud_ S, (3.84)
J l Kk l
or
D'T =8"C (3.85)

In practice, it is not necessary to invert matrix D?. This is due to the fact that for each global
basis function g;, there exists at least one element K, for which restriction g;|x reduces to
one of the element shape functions, possibly premultiplied with (—1) sign factor. In other
words, in the corresponding row in the matrix D;;, there is only one non-zero entry.

The formal algorithm looks as follows.
e Initiate 7T; = 0.
e For each element K in the mesh:

— For each local H(curl) d.o.f.:

*

Exit the cycle if the local d.o.f. is connected to more than one global d.o.f.

*

Determine the connected global d.o.f. j and coefficient D;.
* For each local H' d.o.f. k:
- For each connected global H' d.o.f. i set Tj; = 0.
* End of loop through local H! d.o.f.
For each local H! d.o.f. k:
- For each connected global H' d.o.f. i accumulate T = Tj + Dj_leZ-kSlk.
* End of loop through local H! d.o.f.

— End of loop through local H(curl) d.o.f.

*

e End of loop through elements.

4 Numerical Results Concerning the Two Grid Solver

This section is devoted to an experimental study of convergence and performance of our
two-grid solver for EM problems. The study will be based on three model EM problems that
we will introduce shortly. Using these examples, we will address the following issues:
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e error estimation for the two grid solver,
e the need for controlling gradients by using Hiptmair or AFW decompositions, and,

e the possibility of guiding the optimal Ap-refinements with a partially converged solu-
tion.

4.1 Examples

We shall work with three EM examples. For each model problem, we describe the geometry,
governing equations, material coefficients, and boundary conditions. We also display the
exact or approximate solution, and we briefly explain the relevance of each problem in this
research.

4.1.1 Diffraction of a plane wave on a screen

We consider the problem of a plane wave incident (at a 45 degree angle) to a diffracting
screen.

Geometry. Unit square ([0,1]?). See Fig. 1.

¥

Figure 1: Geometry and solution (module of the second component of the electric field) of
the diffraction of plane wave on a screen.

N <

Governing equations. 2D Maxwell’s equations.
Material coefficients. Free space.

Boundary conditions. Dirichlet boundary conditions corresponding to the exact solu-
tion.
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Exact solution. The exact solution can be expressed in terms of Fresnel integrals (see,
for example, [9]).

H(r,0) = % exp™/AIET L (V2K sin(0/2 — 7/8)] 4+ F[V2krsin(0/2 + 7/8)]},  (4.86)

F(u) = g{expj’f/4 —V2[C(y/2/mu) — jS(1/2/7u)]}, (4.87)
C(z) —jS(z) = /08 exp /2 gt (Fresnel Integrals). (4.88)

Solution is displayed in Fig. 1.

Observations. Solution of this 2D wave propagation problem in free space lives in
H(curl), but not in H*.

4.1.2 Model waveguide example

Geometry. See Fig. 2.

Figure 2: Geometry and FE solution (module of second component of the magnetic field) of
the model waveguide problem.

Governing equations. 2D Maxwell’s equations.

Material coefficients. Free space.
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Boundary conditions. Cauchy boundary condition (to model the left excitation port),
absorbing boundary condition (to model the right port) and homogeneous Dirichlet BC (to
model the metallic top and bottom walls). See equations (5.105) and (5.106) for details in
the Cauchy BC formulation.

Exact solution. The exact solution is unknown. A FE solution is displayed in Fig. 2.

Observations. Solution of this 2D wave propagation problem in free space lives in
H(curl), but not in H'. Tt involves four singular reentrant corners.

4.1.3 A 3D Electromagnetics model problem

Geometry. Unit cube ([0, 1]*). See Fig. 3.

-

Figure 3: Geometry and exact solution of the 3D EM model problem with k =
05;})29 (sin(357/180) cos(257/180)uy + sin(357/180) sin(257/180)uy, + cos(357/180))u,.

Governing equations. Maxwell’s equations.

Boundary conditions. Dirichlet at the three faces adjacent to the origin, and Cauchy
(impedance) at the remaining three faces.

Exact solution. The plane wave E(r) = j \I;IX{_—II’( exp/¥T where

® r = u,r + uyy + u,z is the position vector,

o k = usk, +uyk, +u,k, with k,, k,, k. real indicates the wave amplitude and phase,
and,

® p = ux + uy + u, determines polarization of the plane wave.
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Observations. We use the example to study performance of the two grid solver and
illustrate necessity (or not) of large order of approximation p for different values of k,, k,,
and k.

4.2 FError estimation

In the following, we focus on error estimation and selection of the stopping criterion discussed
in Section 2.5.

First, we consider:

| Oé(n)SEr(n) 1P
| a0 Sgr©) |5

0.01 < <0.1 (4.89)

Then, we define two error estimators:

_ | ™ Sgr® |5
| @@ SEr© ||p

\/1 . (9(1);9(0))2
\/1 _ (g(n)+9(n—1))2

E™(1) (4.90)

E"(2) = E"(1)

(4.91)

2

— _E"Q)
= By

Figures 4, and 5 compare the accuracy of both error estimates (E™(1) and E™(2)) for

where g(n)

different hp-grids corresponding to the model waveguide and the diffraction of a plane wave
on a screen problems. More numerical results comparing both error estimators can be found
in [25]. These results indicate that £™(2) is a more accurate error estimator than £"(1) in
most (but not all) cases.

4.3 The need for controlling gradients of potentials

In the following, we study numerically the need for using a subspace decomposition for our
two grid solver that provides control over gradients, either explicitly (Hiptmair’s approach)
or implicitly (the AFW approach).

In Fig. 6, we display convergence history for the two grid solver algorithm, with and
without the explicit correction for gradients of potentials. If this correction is not included,
we may loose control over the kernel of the curl operator, leading to a non converging (or
converging very slowly) two grid solver algorithm. Notice that the problem is induced by
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— Exact Error \ — Exact Error
Error Est 1 Error Est 1
—05- — Error Est2 05} — Error Est2

LOG EXACT ERROR
LOG EXACT ERROR
!

~45 L L L L L L L L ] 45 L I I I I )
0 10 20 30 40 50 60 70 80 90 0 5 10 15 20 25 30
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Figure 4: Model waveguide example. Exact (red) versus two estimated (cyan -E(1)- and
blue -E(2)-) errors for the two grid solver with a 3774 (left) and 34161 (right) d.o.f. mesh.

NRDOF=13946 NRDOF=45830

— Exact Error — Exact Error
Error Est 1 \ Error Est 1
— Error Est2 ael N — Error Est2

LOG EXACT ERROR
!
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|
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0 10 20 30 40 50 60 70 80 0 5 10 15 20 25 30 35 40 45 50
NUMBER OF ITERATIONS NUMBER OF ITERATIONS

Figure 5: Diffraction of a plane wave on a screen problem. Exact (red) versus two estimated
(cyan -FE(1)- and blue -F(2)-) errors for the two grid solver with a 13946 (left) and 45830
(right) d.o.f. mesh.

the presence of the curl operator in our variational formulation, and not by the fact that
our problem may be indefinite.

In Figures 7, and 8 we display convergence history for the two grid solver algorithm
without the explicit correction for gradients for a 3D EM problem using different smoothers

S1, 9, and S3, defined as:

e S; corresponds to AFW decomposition, that is, a block (of the Jacobi smoother)
corresponds to the span of all basis functions whose supports are contained within the
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Figure 6: Diffraction of a plane wave on a screen problem with a purely imaginary wave
number (thus, the problem is SPD). Exact (red) versus two estimated (cyan -£/(1)- and blue
-E(2)-) errors for the two grid solver with a 7471 d.o.f. mesh (left figure). In the right figure,
correction for gradients were not utilized.

support of a vertex basis functions,
e blocks of Sy correspond to all d.o.f. associated to a particular (modified) element, and

e blocks of S5 correspond to all d.o.f. associated to all (modified) elements adjacent to
a vertex node.

Although a block of S5 is larger than the corresponding block of S, convergence of the
two grid solver is only guaranteed for smoother S;. Indeed, only S; controls the kernel of
the curl without the need for an explicit gradient correction.

Unfortunately, size of patches associated to block Jacobi smoother Sy (corresponding to
AFW decomposition) are rather large (for p >> 1). Thus, the corresponding two grid solver
becomes quite expensive, both, in terms of memory requirements, and CPU time.

4.4 Guiding hp-adaptivity with a partially converged solution

We come now to the most crucial question addressed in this article. For EM problems, how
much can we relax our convergence tolerance for the two grid solver, without loosing the
exponential convergence in the overall hp-adaptive strategy? In the remaining of this section,
we try to reach a conclusion via numerical experimentation only.

We work this time with two examples: diffraction of a plane wave on a screen problem,
and the model waveguide example. For each of these problems we run the hp-adaptive
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Figure 7: 3D EM model problem. Exact (red) versus two estimated (cyan -E(1)- and blue
-E(2)-) errors for the two grid solver with a 6084 d.o.f. mesh (without using an explicit
correction for gradients), for smoothers Sy (left figure) and Sy (right figure).
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Figure 8: 3D EM model problem. Exact (red) versus two estimated (cyan -F(1)- and blue
-E(2)-) errors for the two grid solver with a 6084 d.o.f. mesh (without using an explicit
correction for gradients), for smoother Si.

strategy using up to four different strategies to solve the fine grid problem:

1. a direct (frontal) solver,

2. the two-grid solver with tolerance set to 0.01 (as described in section 4.2),
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3. the two-grid solver with tolerance set to 0.1, and

4. the two-grid solver with tolerance set to 0.3.

As a measure of the error, we use an approximation of the error in H(curl)-norm. We
simply compute the H(curl) norm of the difference between the coarse and (partially con-
verged) fine mesh solution. The error is reported relative to the norm of the fine grid solution,
in percent.

Finally, for each of the cases under study, we report the number of the two-grid iterations
necessary to achieve the required tolerance.

—03 03

s 01 — o1

0.01 L
— Frontal Solver 18 0.01

H
.
T

RELATIVE ERROR IN %
=
S

NUMBER OF ITERATIONS
=
=)

10+

I I I I I I ) 0 L L L
512 1000 1728 2744 4096 5832 8000 10648 0 05 1 15 2 25 3 35
NUMBER OF DOF NUMBER OF DOF IN THE FINE GRID 10"

Figure 9: Diffraction of a plane wave on a screen problem. Guiding hp-refinements with a
partially converged solution. The left figure displays a discretization error estimate. The
right figure shows the number of iterations needed by the two grid solver.

From Figures 9 and 10 we draw the following conclusions.

e The two-grid solver with 0.01 error tolerance generates a sequence of hp-grids that has
similar convergence rates to the sequence of hp-grids obtained by using a direct solver.

e As we increase the two-grid solver error tolerance up to 0.3, the convergence rates of
the corresponding sequence of hp-grids does not decrease at all. However, the number
of iterations (as well as the CPU time) decreases dramatically.

e The number of iterations required by our two-grid solver does not increase as the
number of degrees of freedom increases.
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Figure 10: Model waveguide example. Guiding hp-refinements with a partially converged
solution. The left figure displays a discretization error estimate. The right figure shows the
number of iterations needed by the two grid solver.

To summarize, it looks safe to relax the error tolerance to 0.1 (or even larger) value,
without loosing the exponential convergence rates of the overall hp mesh optimization pro-
cedure.

5 Electromagnetic Applications

We conclude our work with a number of more realistic EM examples related to applications in
the area of Petroleum Engineering, a simulation of a waveguide filter with six inductive irises,
and a dispersion error study in 3D, critical for radar simulations. We focus on advantages and
limitations of our numerical technique combining the fully automatic hp-adaptive strategy
with the two grid solver.

5.1 Modeling of Logging While Drilling (LWD) EM measuring
devices

In this section, we consider two problems posed by the oil company Baker-Atlas? in the area of
LWD EM measuring devices: an electrostatic edge singularity problem, and an axisymmetric
battery antenna problem.

2Baker-Atlas, a division of Baker-Hughes
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5.1.1 An electrostatic edge singularity problem

A number of LWD instruments incorporate EM antennas covered by metals with plastic
apertures. Thus, edge singularities for the electric field may occur on the boundary between
plastic and metal.

As a result, to find the electric field near edge singularities may become essential. In
addition, edge singularities for the electric (or magnetic) field may occur in the geologi-
cal formation. Strength of an edge singularity is dependent upon geometry and sources.
The fully automatic hp-adaptive algorithm does not only detects singularities, but it also
distinguishes between singularities of different strength.

Here, we focus on edge singularities arising in electrostatic problems and we present high
accuracy approximations for the electric field by considering the following problem with an
edge singularity, for which analytical solution is known:

Geometry. See Fig. 11.

Figure 11: Geometry of the electrostatic problem with an edge singularity.

Governing equation. Laplace equation (—Au = 0).
Boundary conditions. v = —In r, where r = /(22 + 3?).

Exact solution. The analytical solution is known, and it was provided to us by Baker-
Atlas® (see eq. (5.98)).

Observations. This 2D problem has a corner singularity located at (—1,—1), which
corresponds to an edge singularity in 3D located at (—1,—1,z). We are interested in ap-
proximating the exact solution at distances from the singularity ten to twelve orders of

3We thank Lev Tabarovsky and Alex Bespalov for this example
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magnitude smaller than the size of the domain.

To introduce the physics of our problem, we consider two perfect electric conductor
(PEC) infinite lines intersecting at a nonzero point (z.,y.), as shown in Fig. 1. Let g be
the angle between PEC, and PEC,, and p a Dirac’s delta function distribution of charges
concentrated at point (0,0).

PEC,

Figure 12: Model problem.

Boundary Value Problem (BVP). The electrostatic phenomena is governed by the
following system of equations,

VxE=0
(V&2 o0
Thus, solving for scalar potential p, we obtain:
divVp = Ap = (5.93)

€
with boundary conditions:

e p=0on PEC, and PEC,.

e p = 0 on a boundary far enough from the source. Since electric field E decays as
1/r (where r is the distance from a given point to the source), for r large enough (for
example, r = 10°), the electric field intensity is negligible, and can be replaced by 0.

Thus, denoting by €2 our computational domain (shown in Fig. 11) and by I its boundary,

we obtain:
_ P
Ap = in & (5.94)
p=0 on I'.
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Secondary (scattered) field. Now, let p be a unitary electric charge distribution con-
centrated at the origin in free space. Solution is given by p?"™ = In r. Then:

Ap — pP""™m =0 in Q
{p—pp”m:O—lnr:—lnr on I (5.95)

Solving the problem for secondary potential p*¢ = p — pP"™  we avoid modeling of the
source, obtaining:

{ Ap*© =0 in € (5.96)

p*“=—Inr on T

Variational Formulation. In order to derive the corresponding variational formulation,
we multiply equation Ap**“ = 0 by a test function v € V = HJ(Q) = {u € H'(Q) : u =
0 on I'}, and integrate (by parts) over domain 2. We obtain:

Find v € ug+V

(5.97)
/QVqu:() YveV,

where ug is a lift corresponding to the non-homogeneous Dirichlet boundary conditions.

Exact Solution. The exact solution of this electrostatic problem can be computed analyt-
ically [22]. At points located on the surface of PEC], the normal component of the electric
field as a function of 3,~,z,y, z., and ¥., is given by:

15 sin (=
o TeinF) (5.98)
$ [1—20%cos("}) +17]

where s is the distance from a given point (z,y) to the corner (x.,y.), i.e.,

s =@ =)+ (y = y.)? (5.99)
and [ is given by:
Vet e
[=+—. (5.100)
s
In particular, for v = g, we have:

2 1 9
Ep = ———t = . u . (5.101)

Va2 77 0] (a2 ) BT (a2 4 2)
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There exists a singularity at point (x.,y.) (edge singularity in three dimensions) if and
only if m < 3. Furthermore, the larger is 3 the stronger is the singularity. In particular, the
strength of singularity is independent of the selected nonzero point (z.,y.). Therefore, we
set x. = y. = —1, obtaining:

—2m
E, = Ey(s,8) = — — (5.102)

B [2_%81+% + 2%51_5]

For simplicity, we will restrict ourselves only to the case 3 = 358 degrees, which corre-
sponds to a strong edge singularity.

Numerical Results. Figures 13, 14, 15, 16, 17, 18, and 19, show different zooms on the
final hp-grid (generated automatically by our refinement strategy) toward the singularity.
Notice that elements near the singularity are up to thirteen orders of magnitude smaller than
other elements in the same grid!

2Dhp0: A Fully aometic hp-aceptive Finite Element code

Figure 13: Final hp-grid (Zooms = 1,10) for the electrostatic edge singularity problem.
Different colors indicate different polynomial orders of a approximation, from p = 1 (dark
blue) to p = 8 (pink).

Finally, in Fig. 20, a comparison between the exact and approximate solutions of the
normal component of the electric field over PEC] at points located near the singularity is
displayed. Notice that in order to study behavior of the edge singularity, we are interested
in points located at distances 107¢ — 1072 from the singularity. As it can be concluded from
Fig. 20, we do fully resolve the problem in the region of interest.
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Figure 14: Final hp-grid (Zooms = 102,10%) for the electrostatic edge singularity problem.
Different colors indicate different polynomial orders of a approximation, from p = 1 (dark
blue) to p = 8 (pink).

2Dhp90: A Fully automatic hp-adegtive Finite Element code 2Dhpat: A Fully autometic hp-adaptive Finite Element code

Figure 15: Final hp-grid (Zooms = 10*,10°) for the electrostatic edge singularity problem.
Different colors indicate different polynomial orders of a approximation, from p = 1 (dark
blue) to p = 8 (pink).

5.1.2 An axisymmetric battery antenna problem: the need for goal-oriented
adaptivity

We consider the following axisymmetric battery antenna in a homogeneous medium with
nonzero conductivity o.

Geometry. 3D axisymmetric problem. See Fig. 21.
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Figure 16: Final hp-grid (Zooms = 10°,107) for the electrostatic edge singularity problem.
Different colors indicate different polynomial orders of a approximation, from p = 1 (dark
blue) to p = 8 (pink).

2Dhp90: A Fully automatic hp-adegtive Finite Element code 2Dhpat: A Fully autometic hp-adaptive Finite Element code
~
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Figure 17: Final hp-grid (Zooms = 10%,10°) for the electrostatic edge singularity problem.
Different colors indicate different polynomial orders of a approximation, from p = 1 (dark
blue) to p = 8 (pink).

Governing equations. Axisymmetric 3D Maxwell’s equations.

Material coefficients.

e Conductivity: 1 Siemens.

e Frequency: 1 Mhz.
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2Dhpd0: A Fully automaiic hyaeptive Finite Element code 2Dhp0: A Fully aometic hp-acaptive Finite Element code

Figure 18: Final hp-grid (Zooms = 10'°,10!) for the electrostatic edge singularity problem.
Different colors indicate different polynomial orders of a approximation, from p = 1 (dark
blue) to p = 8 (pink).

2Dhp90: A Fully automatic hp-adegtive Finite Element code 2Dhpat: A Fully autometic hp-adaptive Finite Element code

Figure 19: Final hp-grid (Zooms = 10'2,10'3) for the electrostatic edge singularity problem.
Different colors indicate different polynomial orders of a approximation, from p = 1 (dark
blue) to p = 8 (pink).

e Relative permeability and permittivity: 1.

Boundary conditions. Homogeneous Dirichlet and Neumann, see (5.103).

Exact solution. The analytical solution is unknown, although it is known to decay
exponentially as we go away from the battery antenna, since we have a nonzero conductivity.
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Figure 20: Value on the PEC; edge of normal component of electric field at distances
1075 — 107* (top figure), 107* — 1072 (bottom left figure), and 1072 — 10° (bottom right
figure) from the singularity. The blue curve denotes exact solution, while FE approximation
is represented by a black curve.

Observations. We are interested in approximating the exact solution at points far away
(0.5m) from the antenna.

The original 3D problem can be reduced to a 2D boundary value problem, which can be
formulated in terms of a 2D E-field obtained by solving the reduced wave equation with the
appropriate boundary conditions.

Since o # 0, it is known that the electric field intensity decays exponentially as we
move away from the source (battery antenna), and we can select a finite computational
domain with homogeneous Dirichlet boundary conditions enforced at points distant from
the antenna. More precisely, we may formulate our boundary value problem in domain 2
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Figure 21: A 2D cross section geometry of the axisymmetric battery antenna problem.

(shown in Fig. 21) as follows.

V x (leE>—(w26—jw0)E:O in Q

1
nxV xFE=—jwu on I'y (5.103)
nxVxFE=0 on I's
nx E=0 OHFQUF4.

The corresponding variational formulation is given by:
Find E € Hp(curl; Q) such that

/Q%(V X B) - (V x F)iz — [ (e~ juo)E - Pz = (5.104)

Wi {/ FdS} for all F € Hp(curl; ().
Iy

where Hp(curl; Q) = {E € H(curl;Q2) : nx E |,ur,)= 0} is the Hilbert space of admissible
solutions.

The corresponding stabilized variational formulation can then be derived using techniques
of Section 2.1.

Fig. 22 shows convergence history for a sequence of optimal hp-grids produced by our

refinement strategy, which is delivering exponential convergence rates.

The final hp-grid (with the corresponding zooms toward the battery antenna) is displayed
in Figures 23, 24,25, 26, and 27. This final hp-grid is optimal in the sense that it minimizes
the relative energy norm error with respect to the number of unknowns.
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90.1%rror

SCALES: nrdof~0.33, log(error)

Figure 22: Convergence history of the axisymmetric battery antenna in the scales number
of unknowns to the power of 1/3 (algebraic scale) vs logarithm of the relative energy norm
€erTor.

2Dhp30: A Fully automatic hp-adaptive Finite Element code 2Dhpa0: A Fully automatic hp-adaptive Finite Element code
V]

Figure 23: Final hp-grid (Zooms = 1,10) for the axisymmetric battery antenna problem.
Different colors indicate different polynomial orders of a approximation, from p = 1 (dark
blue) to p = 8 (pink).

Unfortunately, the objective of this problem is to estimate the electric field at distances
far away from the source. And for this purpose, an energy norm based refinement strategy
is not suitable, and a goal-oriented adaptive strategy is needed.
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2Dhpd0: A Fully automaiic hyaeptive Finite Element code 2Dhp0: A Fully aometic hp-acaptive Finite Element code

Figure 24: Final hp-grid (Zooms = 10%,10%) for the axisymmetric battery antenna problem.
Different colors indicate different polynomial orders of a approximation, from p = 1 (dark
blue) to p = 8 (pink).

2Dhp90: A Fully automatic hp-adegtive Finite Element code 2Dhpat: A Fully autometic hp-adaptive Finite Element code

Figure 25: Final hp-grid (Zooms = 10%,10%) for the axisymmetric battery antenna problem.
Different colors indicate different polynomial orders of a approximation, from p = 1 (dark
blue) to p = 8 (pink).

5.2 Waveguide design

In this section, we focus our attention on the following six inductive irises waveguide problem:
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2Dhpd0: A Fully automatic hyaeptive Finite Element code 2Dhp0: A Fully aometic hp-acaptive Finite Element code

Figure 26: Final hp-grid (Zooms = 105,107) for the axisymmetric battery antenna problem.
Different colors indicate different polynomial orders of a approximation, from p = 1 (dark
blue) to p = 8 (pink).

2Dhp90: A Fully automatic hp-adegtive Finite Element code 2Dhpa0: A Fully autometic hp-adaptive Finite Element code
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Figure 27: Final hp-grid (Zooms = 108,10%) for the axisymmetric battery antenna problem.
Different colors indicate different polynomial orders of a approximation, from p = 1 (dark
blue) to p = 8 (pink).

Geometry: A six inductive irises filter* of dimensions ~ 20 x 2 x 1 cm. For details, see
Fig. 28.

Governing equations. Maxwell’s equations.

Material coefficients.

4We thank Dr. Luis Garcia-Castillo and Mr. Sergio Llorente for this problem
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Figure 28: Geometry and FE solution (\/ | H, |> + | Hy |?) at 8.82 Ghz of the waveguide
problem with six inductive irises.

e Free space

e Operating Frequency ~ 8.8 — 9.6 Ghz

e Cutoff frequency =~ 6.56 Ghz

Boundary conditions. Dirichlet, Neumann and Cauchy, see (5.105).

Exact solution. The exact solution is unknown. A FE solution is displayed in Fig. 28.

Observations.

H-plane six inductive irises filter.

Solution of this wave propagation problem lives in H(curl), but not in H*.

Solution involves resolution of twenty four singular reentrant corners.

Dominant mode (source): T Ejp—mode.

First, we formulate the boundary value problem. Next, we present the variational for-
mulation and discuss a way to compute the scattering parameters, the primary quantity
of interest for the waveguide design. Third, we display results obtained with our numeri-
cal method. Finally, we use the problem to illustrate some of the limitations of the fully
automatic hp-adaptive strategy, and the two grid solver.
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Formulation. We excite the T'Ejg-mode at the left hand side port of the waveguide struc-
ture (see Fig. 28), and we consider an H-plane discontinuity, i.e., the magnetic field is
invariant with respect to the z-direction. Thus, our original 3D problem can be reduced to a
2D boundary value problem, which we can formulate in terms of the 2D H-field as follows.

1
VX(—VXH)—uﬂ,uH:() in
€
1 jw? :
nX—VXH:Jw'ManX(QH”w—H) onI'y
‘ buo (5.105)
nX—VxH:—J Mnxan on I'y
€ 10
1
nx -VxH=0 on Iy,
€

where I'1, 'y, and I's are the parts of the boundary corresponding to the excitation port (left
port), non-excitation port (right port), and the perfect electric conductor respectively ; (1o
refers to the propagation constant of the TE;y mode ; and H"™ is the incident magnetic
field at the excitation port.

The corresponding variational formulation is given by:
Find H € Hp(curl; Q) such that

/E(VXH)-(VXF)d:I:—/wzuH-Fdx—F
0

€ Q
o i (5.106)
9;10“ [ (nx H)-(nx F)dS =
jw2:u inc I
2 (nx H™) - (nx F)dS forall F € Hp(curl;Q).

ﬁlO I8}

In the above Hp(curl; Q) is the space of admissible solutions,
Hp(curl; Q) :={H € L*(Q) : Vx H € L*(Q)} . (5.107)

The stabilized variational formulation can be derived using techniques of Section 2.1.

Scattering parameters. The objective of the waveguide problem is to compute the so
called scattering parameters. Since the only propagating mode is T'Eg, we have two power
waves® present at each port T'; (i = 1,2): one going inward (a;), and other going outward

5 A power wave can be identified with a complex number such that its magnitude squared represents the
power carried by the wave, and its argument is the phase of the wave
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(b;) the structure. The relation between the power waves is linear, and may be written in
matrix form as

by St Sz ay
= . 5.108
<bz> (Sm 822> <a2> ( )

where S;; are the scattering parameters, or simply S parameters. Thus, the S parameters
relate the incident and reflected power waves. Note that Si1, S5 are reflection coefficients
and Sio, 591 are transmission coefficients.

The absorbing boundary condition at I'y implies as = 0, and (5.108) reduces to:
Sn=— ; Sp=-—. (5.109)

Also, we have the reciprocity condition, given by Sis = Sa; (see [17]). And since no losses
occur within the waveguide structure, symmetry property | Si; |*> + | S22 |[*= 1 holds (see
[18]).

Numerical results. The problem may be solved by using semi-analytical techniques (for
example, mode matching techniques [28]). Nevertheless, it would be desirable to solve it using
purely numerical techniques, since a numerical method allows for simulation of more complex
geometries and /or artifacts possibly needed for the construction of an actual waveguide.

While attempting to solve this problem using the fully automatic hp-adaptive strategy
coupled with the two grid solver, we encountered the following limitations.

1. We cannot guarantee convergence of the two grid solver if the coarse grid is
not fine enough, as predicted by the theory. In this case, we need a minimum of seven
elements per wavelength A in the x-direction, and thirteen elements per wavelength A
in the y-direction. Furthermore, as indicated in Table 1, convergence (or not) of the
two grid solver is (almost) insensitive to p-enrichment.

Does the two grid solver converge? | p=1|p=2|p=3|p=4
Number of elements per A =7,13 | YES | YES | YES | YES
Number of elements per A = 7,11 NO NO NO | YES
Number of elements per A = 6,13 NO NO NO NO

Table 1: Convergence (or not) of the two grid solver for different quasi-uniform initial grids

2. We cannot guarantee the optimality of the fully automatic hp-adaptive strat-
egy if the dispersion error is large. Since solution of the problem on the fine grid
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is used to guide optimal hp-refinements, we need to control the dispersion error on the
fine grid. Thus, h needs to be sufficiently small or p sufficiently large. In Fig. 29, we
compare the convergence history obtained by using the fully automatic hp-adaptive
strategy starting with different initial grids. For third order elements, the dispersion
error is under control (see estimates of [1, 20, 21]), and the fully automatic hp-adaptive
strategy converges exponentially. We also observe that, in the asymptotic regime, all
curves present similar rates of convergence.

3
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Figure 29: Convergence history using the fully automatic hp-adaptive strategy for different
initial grids. Different colors correspond to different initial orders of approximation. 27 is the
minimum number of elements needed to reproduce the geometry, while 1620 is the minimum
number of elements needed to reproduce the geometry and to guarantee convergence of the
two grid solver.

We solved the six irises waveguide problem delivering a 0.2% error (in the relative energy
norm). Fig. 30 displays the magnitude of the Sy; scattering parameter (on the decibel scale)
with respect to the frequency. This quantity is usually referred to as the return loss of the
waveguide structure. For frequency interval 8.8 — 9.6 Ghz, the return loss is below —20dB,
which indicates that almost all energy passes through the structure, and thus, the waveguide
acts as a filter.

Finally, Figures 31, 32, 33, and 34 display solution at different frequencies. For frequencies
8.72 Ghz, and 9.71 Ghz, the return loss of the waveguide structure is large, and for frequencies
8.82 Ghz, and 9.58 Ghz the return loss is below —20dB.
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Figure 30: Return loss of the waveguide structure.

Figure 31: | H, | (upper figure), | H, | (center figure), and \/| H, >+ | Hy |? (lower figure)
at 8.72 Ghz for the six irises waveguide problem.

5.3 Analysis of a 3D EM model problem.

In this section, we study numerically a 3D EM model problem introduced in Section 4.1.3.
Given a unit cube geometry, the objective is to determine number of elements N and corre-
sponding order of approximation p, needed to solve Maxwell’s equations numerically, for an
arbitrary plane wave solution at different frequencies (thus, wavelengths).

A second motivation for this numerical experiment comes from studying the fully auto-
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Figure 32: | H, | (upper figure), | H, | (center figure), and \/] H, >+ | Hy |?* (lower figure)
at 8.82 Ghz for the six irises waveguide problem.

Figure 33: | H, | (upper figure), | H, | (center figure), and \/| H, >+ | Hy |? (lower figure)
at 9.58 Ghz for the six irises waveguide problem.

matic hp-adaptive strategy, which may produce misleading results if dispersion error on the
initial fine grid is too large. In this section, we present combinations of uniform hp-grids,
that lead to solution of our model problem (at different frequencies) with a relative energy
norm error below 5%. These hp-meshes may be utilized as a guide to construct the initial
fine grid for the hp-adaptive strategy.

For these purposes, we select an incoming plane wave with
k = k(sin(a) cos(f)ux + sin(a) sin(B)uy, + cos(fB)u,) , (5.110)
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Figure 34: | H, | (upper figure), | H, | (center figure), and \/] H, >+ | Hy |?* (lower figure)
at 9.71 Ghz for the six irises waveguide problem.

where k is the wave number, a = 357/180, and § = 257/180. We consider a 1D cross
section given by the main diagonal of the unit cube, starting at the origin and ending at
point (1,1,1). Figures 35, and 36 show a comparison between exact and FE solution for
the real part of the first component of the electric field, using different hp-meshes. For
an hp-grid delivering 4.4% relative error in the energy norm, differences in both phase and
amplitude between exact and FE solutions cannot be appreciated. As the error increases,
these differences become larger.

Since solution of the 3D EM problem is smooth, large elements with large polynomial
order of approximation p are preferred over small elements with small p. In addition, dis-
persion error decreases faster by increasing p rather than by decreasing element size h (see
[1],[20], and [21]). Table 2 illustrates these assertions. Using p = 5, a grid with 51000 d.o.f
delivers smaller error than a grid with 20 million unknowns and lowest order elements for
the model problem with 8 wavelengths on the main diagonal.

Table 2 has been generated by using a direct (frontal) solver. Notice that the two grid
solver requires an elevated number of elements per wavelength on the coarse grid to guarantee
convergence, as mentioned in Section 5.2. As a consequence, the two grid solver could not
be utilized to produce the table.
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Nr. of A vs p p=1 p=2 p=3 p=4 pP=5
ERROR 5.0 % 42 % 1.2 % 1.8 % 0.3 %
A=1 ELEM/A 20 3 2 1 1
D.O.F. 40K 946 1033 308 548
ERROR 4.2 % 2.9 % 1.9 % 0.3 %
A= 2 ELEM/A 3 1.5 1 1
D.O.F. (>300K) 6427 2764 2226 4109
ERROR 3.5 % 4.1 % 1.8 % 2.1 %
A=3 ELEM/A 3.33 1.33 1 0.66
D.O.F. (>1200K) 31K 7115 6148 4109
ERROR 5.0 % 1.9 % 1.2 %
A=4 ELEM/A 1.25 1 0.75
D.O.F. (>2300K) || (>82K) 12K 14K 12K
ERROR 3.6 % 4.4 % 3.4 %
A=5 ELEM/A 1.4 0.8 0.6
D.O.F. (>135K) 31K 27K 12K
ERROR 4.2 % 3.8 % 2.1 %
A= 6 ELEM/A 1.33 0.83 0.66
D.O.F. (>240K) 46K 27K 27K
ERROR 3.4 % 4.3 %
A=T7 ELEM/A 0.86 0.57
D.O.F. (>410K) || (>98K) 45K 27K
ERROR 2.8 %
A= 38 ELEM/A 0.625
D.O.F. (>20M) (>650K) || (>167K) | (>71K) 51K
ERROR
A= 50 ELEM/A
D.O.F. | (>5000M) | (>122M) | (>25M) | (>14M) || (>9.5M)

Table 2: 3D electromagnetics model problem. For frequencies from 1 to 50 wavelengths
A, and uniform hp-grids (1 < p < 5), we display relative error in the energy norm (in
percentage), number of elements per wavelength A\, and actual (or estimated) number of
d.o.f required to obtain an error below 5%.
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Figure 35: 3D EM model problem. 1D cross section over the main diagonal of the unit cube
(from (0,0,0) to (1,1,1)). Comparison between the exact and the FE solution component
Re(E)), for different hp-meshes delivering 4.4% and 13.4% error (in the relative energy norm)

respectively.

RELATIVE ERROR IN THE ENERGY NORM= 32.8%
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Figure 36: 3D EM model problem. 1D cross section over the main diagonal of the unit cube
(from (0,0,0) to (1,1,1)). Comparison between the exact and the FE solution component

Re(E)), for an hp-mesh delivering 32.8% error (in the relative energy norm).

6 Conclusions and Future Work
In this paper, we have studied a two grid solver for solving linear systems resulting from

hp FE discretizations of Maxwell’s equations. The meshes come in pairs, consisting of a
coarse mesh and the corresponding fine mesh obtained via the global hp refinement of the
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coarse mesh. The coarse meshes are generated by a special hp-adaptive algorithm, based on
minimizing the projection based interpolation error of the fine mesh solution with respect to
the next optimally refined coarse mesh. The solver combines block Jacobi smoothing with
an optimal relaxation, with the coarse grid solve.

Instead of using the two grid iteration for producing a preconditioner for Conjugate
Gradient (CG) only, we chose to accelerate each smoothing operation individually with an
approximation of the Steepest Descent (SD) method, which we interpret as determining the
optimal relaxation parameter.

Within the described framework, we have studied several critical questions including the
convergence theory, implementation issues, the need of controlling gradients, error estimation
for the two grid solver and, first of all, the possibility of guiding the hp strategy for EM
problems with only partially converged solution. As a result of it, we verified that a partially
converged solution, with a rather large (relative) error tolerance of 0.1, is sufficient to guide
the hp strategy. The corresponding number of two grid iterations stays then very minimal
at a level below 10 iterations per mesh.

Then, we have applied our numerical technique (the fully automatic hp-adaptive strategy
coupled with the two grid solver) to a number of practical EM problems. While most
applications were solved with extreme accuracy, we also faced a number of limitations:

e The two grid solver may not converge for indefinite problems if the coarse grid is too
coarse. Furthermore (as shown in Lemma 1), this condition over the element size does
not depend upon the polynomial order of approximation p. A multigrid solver for which
the constant in Lemma 1 decreases as p increases is badly needed for wave propagation
problems, when hAp-Finite Elements are used.

e An adaptive strategy based on minimization of the energy norm may be inadequate
for a number of EM applications as, for example, the axisymmetric battery antenna
problem. Thus, an hp goal-oriented adaptive algorithm is needed.
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